Reconstructing the density matrix of a spin \boldsymbol{s} through Stern - Gerlach measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L543
(http://iopscience.iop.org/0305-4470/31/31/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:09

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Reconstructing the density matrix of a spin s through Stern-Gerlach measurements

Jean-Pierre Amiet and Stefan Weigert
Institut de Physique, Université de Neuchâtel, Rue A-L Breguet 1, CH-2000 Neuchâtel, Switzerland

Received 29 April 1998, in final form 19 May 1998

Abstract

The Pauli problem is solved for a spin of length s prepared in an arbitrary (unnormalized) mixed state which has $(2 s+1)^{2}$ free real parameters. The reconstruction of its density operator ρ is possible if one knows the probabilities of the $(2 s+1)$ spin components along each of $(2 s+1)$ directions in space. These probabilties are directly accessible through measurements performed with a Stern-Gerlach apparatus. A multipole expansion of the density operator establishes the link between the matrix elements of ρ and the measured intensities.

Repeated measurements on an ensemble of identically prepared systems allow one to reconstruct the density operator of a particle [1]. The methods to solve this inverse problem-originally formulated by Pauli [2] for pure particle states-simplifies considerably if one performs redundant measurements. Experimentally, reconstruction schemes have been shown to work for light [3], vibrating molecules [4] and ions in a trap [5] (see [6] for a review). The state of atoms in motion has been reconstructed recently [7]. It is difficult, however, to decide on the minimum number of expectation values in order to determine unambiguously a pure or mixed state since the particle Hilbert-space is of infinite dimension.

The Hilbert space of a spin s being of finite dimension, one expects the Pauli problem to be easier to handle. Indeed, various answers to the problem have been obtained for mixed spins of arbitrary length and for pure states with $s=\frac{1}{2}, 1$, as reviewed in [8]. The density matrix of a spin s has been shown to be fixed through $(4 s+1)$ measurements performed with a Stern-Gerlach apparatus [9]. Using Feynman filters, a phase-sensitive version of a Stern-Gerlach apparatus [10], one can determine directly moduli and (relative) phases of the individual matrix elements of the density operator [11] for spin s. If normalized, it depends on $(2 s+1)^{2}-1=4 s(s+1)$ real parameters. Furthermore, as shown in [12], the expectations of $4 s(s+1)$ linearly independent spin multipoles do fix a unique density operator; however, no method has indicated how to determine experimentally these values. Alternatively, the discrete version of a Wigner function associated with finite-dimensional Hilbert spaces allows for experimental reconstruction of quantum states [13] as exemplified in the determination of a single quantized cavity mode [14].

In this letter, it will be shown that the mixed state of a spin s can be reconstructed while respecting the following two constraints:
(i) the measurements are performed with a standard Stern-Gerlach apparatus only;
(ii) no redundant information is acquired.

These two requirements are natural in the sense that they correspond (i) to an especially simple experimental procedure and (ii) to the most effective one. In particular, the use of Feynman filters involving delicate interference experiments is avoided. In addition, the method is constructive: the measured data are not only shown to single out a unique quantum state but the matrix elements of ρ are expressed explicitly in terms of expectation values.

The states of a spin of magnitude s belong to a Hilbert space \mathcal{H}_{s} of complex dimension $(2 s+1)$, carrying an irreducible representation of the group $S U(2)$. The components of the spin operator $\vec{S} \equiv \hbar \vec{s}$ with standard commutation relations $\left[s_{x}, s_{y}\right]=$ is s_{z}, \ldots generate rotations about the corresponding axes. The standard basis of the space \mathcal{H}_{s} is given by the eigenvectors of the z component of the spin, denoted by $|\mu\rangle,-s \leqslant \mu \leqslant s$. The phases of the states are fixed by the transformation under the anti-unitary time reversal T operator: $T|\mu\rangle=(-1)^{s-\mu}|-\mu\rangle$, and the ladder operators $s_{ \pm}=s_{x} \pm \mathrm{i} s_{y}$ act as usual in this basis:

$$
\begin{equation*}
s_{ \pm}|\mu\rangle=\sqrt{s(s+1)-\mu(\mu \pm 1)}|\mu \pm 1\rangle \tag{1}
\end{equation*}
$$

The complexified algebra \mathcal{A}_{s} of observables in the space \mathcal{H}_{s} has complex dimension $(2 s+1)^{2}$. It consists of all polynomials in the operators s_{x}, s_{y} and s_{z} with complex coefficients and of degree $2 s$ at most. A monomial of a degree higher than $2 s$ can be expressed as a linear combination of monomials of lower degree.

It is convenient to use a basis consisting of multipole operators associated with the group $S U(2)$ (cf [15]):
$K_{l m}=\sqrt{2 s+1} \sum_{\mu \mu^{\prime}=-s}^{s}(-1)^{s-\mu}\left(\operatorname{lm} \mid s \mu^{\prime}, s-\mu\right)\left|\mu^{\prime}\right\rangle\langle\mu| \quad 0 \leqslant l \leqslant 2 s,-l \leqslant m \leqslant l$
where $\left(l m \mid s \mu^{\prime}, s-\mu\right)$ is the standard Clebsch-Gordan coefficient. The ensemble of all operators $K_{l m}$ forms an irreducible tensorial set. The $(2 s+1)^{2}$ Hermitian $\left(K_{l m}^{\dagger}=\right.$ $\left.(-1)^{m} K_{l-m}\right)$ multipole operators are orthogonal to each other:

$$
\begin{equation*}
\frac{1}{2 s+1} \operatorname{Tr}\left(K_{l^{\prime} m^{\prime}}^{\dagger} K_{l m}\right)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{3}
\end{equation*}
$$

The multiplication table of multipole operators $K_{l m}$ and their commutators are given in the appendix.

As tensorial sets, the multipoles transform under an element of $S U(2)$ according to

$$
\begin{equation*}
U(\vec{\omega}) K_{l m} U(\vec{\omega})^{\dagger}=\sum_{m^{\prime}=-l}^{l} K_{l m^{\prime}} D_{m^{\prime} m}^{(l)}(\vec{\omega}) \tag{4}
\end{equation*}
$$

where rotations about an axis \vec{e}_{ω} by an angle $|\vec{\omega}|$ are represented as follows:

$$
\begin{equation*}
U(\vec{\omega})=\mathrm{e}^{\mathrm{i} \vec{\omega} \cdot \vec{s}} \quad \text { and } \quad D^{(l)}(\vec{\omega})=\mathrm{e}^{\mathrm{i} \vec{\omega} \cdot \vec{L}_{(l)}} \tag{5}
\end{equation*}
$$

and the angular momentum operator $\vec{L}_{(l)}$ acts in a subspace of dimension $(2 l+1)$.
A statistical (mixed) spin state is given by a Hermitian operator, the density matrix ρ, which is an element of the algebra \mathcal{A}_{s}. Thus, it can be expanded in the basis of multipoles:

$$
\begin{equation*}
\rho=\frac{1}{2 s+1} \sum_{l m} \rho_{l m}^{*} K_{l m} \tag{6}
\end{equation*}
$$

with coefficients $\rho_{l m}^{*}$ given through (3) as expectation values of the operators $K_{l m}$:

$$
\begin{equation*}
\rho_{l m}=\operatorname{Tr}\left(\rho K_{l m}\right)=(-1)^{m} \rho_{l-m}^{*} \tag{7}
\end{equation*}
$$

Explicitly, one has

$$
\begin{equation*}
\rho_{l m}=\sqrt{2 s+1} \sum_{\mu \mu^{\prime}}(-1)^{s-\mu}\left(l m \mid s \mu^{\prime}, s-\mu\right)\langle\mu| \rho\left|\mu^{\prime}\right\rangle . \tag{8}
\end{equation*}
$$

Using the orthogonality of the Clebsch-Gordan coefficients [15], one can express the matrix elements of the density matrix in terms of the coefficients in the expansion (6):

$$
\begin{equation*}
\langle\mu| \rho\left|\mu^{\prime}\right\rangle=\frac{(-1)^{s-\mu}}{\sqrt{2 s+1}} \sum_{l m}\left(s \mu^{\prime}, s-\mu \mid l m\right) \rho_{l m} \tag{9}
\end{equation*}
$$

and equation (7) implies that the diagonal elements of ρ are real. Clearly, both the collection of all $\langle\mu| \rho\left|\mu^{\prime}\right\rangle$ and of all $\rho_{l m}$ each depend on $(2 s+1)^{2}$ real parameters-if, for convenience, the density operator ρ is not normalized to one but $\operatorname{Tr} \rho=\rho_{00}>0$ only is required. According to equation (9), the reconstruction of a density matrix has been achieved if one is able to express the coefficents $\rho_{l m}$ in terms of expectation values.

As indicated earlier, the measurements are to be performed with a Stern-Gerlach apparatus only. Therefore, the experimentally accessible quantities are given by the intensities $p_{\mu}(\theta, \varphi)$, representing the probability to find the system in an eigenstate $|\mu ; \theta, \varphi\rangle$ of the spin operator $\vec{n} \cdot \vec{s}$ along direction $\vec{n}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. The probabilities are diagonal elements of the density operator ρ :

$$
\begin{equation*}
p_{\mu}(\theta, \varphi)=\langle\mu ; \theta, \varphi| \rho|\mu ; \theta, \varphi\rangle \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
|\mu ; \theta, \varphi\rangle \equiv \exp \left[-\mathrm{i} \varphi s_{z}\right] \exp \left[-\mathrm{i} \theta s_{y}\right]|\mu\rangle=\sum_{v=-l}^{l}|v\rangle\langle v| U^{\dagger}(0, \theta, \varphi)|\mu\rangle \tag{11}
\end{equation*}
$$

Upon introducing the multipole expansion (6) of ρ into (10), one obtains

$$
\begin{align*}
p_{\mu}(\theta, \varphi) & =\frac{1}{2 s+1} \sum_{l m} \rho_{l m}^{*}\langle\mu| U(0, \theta, \varphi) K_{l m} U^{\dagger}(0, \theta, \varphi)|\mu\rangle \\
& =\frac{1}{2 s+1} \sum_{l m m^{\prime}} \rho_{l m}^{*}\langle\mu| K_{l m^{\prime}}|\mu\rangle D_{m^{\prime} m}^{(l)}(0, \theta, \varphi) \tag{12}
\end{align*}
$$

and the second equality follows from the transformation property of the basis $K_{l m}$ under rotations, equation (4). It is useful to replace the measured intensities p_{μ} by $(2 s+1)$ linear combinations:

$$
\begin{equation*}
\Pi_{l}(\theta, \varphi)=\sqrt{2 s+1} \sum_{\mu=-l}^{l}(-1)^{s-\mu}(s \mu, s-\mu \mid l 0) p_{\mu}(\theta, \varphi) \tag{13}
\end{equation*}
$$

A linear relation between measurable quantities and the multipole coefficients of the spin state follows if the probabilities p_{μ} are expressed as in equation (12):

$$
\begin{equation*}
\Pi_{l}(\theta, \varphi)=\left(\frac{4 \pi}{2 l+1}\right)^{\frac{1}{2}} \sum_{m=-l}^{l} Y_{l m}(\theta, \varphi) \rho_{l m}^{*} \tag{14}
\end{equation*}
$$

where the functions $Y_{l m}(\theta, \varphi)$ are the spherical harmonics:

$$
\begin{equation*}
\left(\frac{4 \pi}{2 l+1}\right)^{\frac{1}{2}} Y_{l m}(\theta, \varphi)=d_{0 m}^{(l)}(\theta) \mathrm{e}^{\mathrm{i} m \varphi}=D_{0 m}^{(l)}(0, \theta, \varphi) \tag{15}
\end{equation*}
$$

In order to express the density matrix in terms of measurable quantities, now one has to determine an appropriate set of directions in space such that it becomes possible to invert the fundamental relation, equation (14). As a matter of fact there are many possibilities to
extract the $(2 s+1)^{2}$ components of the state ρ from measured data (recall that the density operator ρ is not normalized to one). In the following, four approaches are presented which require less and less measurements.
(i) If one were able to measure the probabilities $p_{\mu}(\theta, \varphi)$ for all angles $\theta \in[0, \pi), \varphi \in$ $[0,2 \pi)$, one could use the orthogonality of the spherical harmonics to extract the unknowns by an integration over the surface of the unit sphere:

$$
\begin{equation*}
\rho_{l m}=\left(\frac{4 \pi}{2 l+1}\right)^{\frac{1}{2}} \int_{0}^{2 \pi} \int_{0}^{\pi} \mathrm{d} \varphi \mathrm{~d} \theta \sin \theta Y_{l m}(\theta, \varphi) \Pi_{l}^{*}(\theta, \varphi) \tag{16}
\end{equation*}
$$

In view of the finite number of unknown parameters, this procedure involves a highly redundant (and physically unrealistic) set of measurements.
(ii) What does a discretized version of this approach look like? Measure the probabilities for $(2 s+1)^{2}$ pairs of angles $\left(\theta_{j}, \varphi_{k}\right)$ distributed 'homogeneously' over the sphere in such a way that the square matrix

$$
\begin{equation*}
\mathcal{Y}_{(l m)(j k)} \equiv Y_{l m}\left(\theta_{j}, \varphi_{k}\right) \tag{17}
\end{equation*}
$$

is invertible. A possible choice of directions $\vec{n}\left(\theta_{j}, \varphi_{k}\right)$ is given by $\varphi_{k}=k 2 \pi /(2 s+1)$, $k=1, \ldots, 2 s+1$, and $\theta_{j}=j \pi /(2 s+2), j=1, \ldots, 2 s+1$, for example [16]. Note that this method works for arbitrary states since the matrix $\mathcal{Y}_{(l m)(j k)}$ is independent of the density operator ρ. Altogether, the values of $(2 s+1)^{3}$ real numbers have to be determined, thus still exceeding considerably the number of independent parameters.

For a further reduction of the number of measurements, the explicit form of the spherical harmonics is used:

$$
\begin{equation*}
Y_{l m}(\theta, \varphi)=\mathrm{e}^{\mathrm{i} m \varphi} \mathcal{P}_{l m}(\theta) \tag{18}
\end{equation*}
$$

where $\mathcal{P}_{l m}(\theta)=N_{l m} P_{l}^{m}(\cos \theta)$ with P_{l}^{m} being a Legendre function of first kind multiplied by a numerical factor $N_{l m}$. Using $\mathcal{P}_{l-m}=(-1)^{m} \mathcal{P}_{l m}$ and equation (7), one obtains for any pair of angles $\left(\theta_{j}, \varphi_{k}\right)$
$\Pi_{l}\left(\theta_{j}, \varphi_{k}\right)=\mathcal{P}_{l 0}\left(\theta_{j}\right) \rho_{l 0}+\sum_{m=1}^{l} \mathcal{P}_{l m}\left(\theta_{j}\right)\left(\cos \left(m \varphi_{k}\right) \operatorname{Re} \rho_{l m}+\sin \left(m \varphi_{k}\right) \operatorname{Im} \rho_{l m}\right)$.
(iii) For directions $\varphi_{0}=0, \varphi_{1}=2 \pi /(2 s+1), \theta_{j}=j \pi /(2 s+1)$ with $j=0, \ldots, 2 s$ on two half-circles, one obtains a set of $2(2 s+1)^{2}$ linear equations from equation (19):
$\Pi_{l}\left(\theta_{j}, 0\right)=\mathcal{P}_{l 0}\left(\theta_{j}\right) \rho_{l 0}+\sum_{m=1}^{l} \mathcal{P}_{l m}\left(\theta_{j}\right) \operatorname{Re} \rho_{l m}$
$\Pi_{l}\left(\theta_{j}, \varphi_{1}\right)=\mathcal{P}_{l 0}\left(\theta_{j}\right) \rho_{l 0}+\sum_{m=1}^{l} \mathcal{P}_{l m}\left(\theta_{j}\right)\left(\cos \left(m \varphi_{1}\right) \operatorname{Re} \rho_{l m}+\sin \left(m \varphi_{1}\right) \operatorname{Im} \rho_{l m}\right)$.
When checking the case $l=2 s$, one realizes that indeed all $2(2 s+1)^{2}$ equations are needed to solve for the unknown real and imaginary parts of $\rho_{l m}$, requiring the matrices $\mathcal{P}_{l m}\left(\theta_{j}\right)$ to be invertible for all θ_{j}.
(iv) The most economical scheme is to measure the probabilities at a fixed angle $\theta_{j}=\theta_{M}$, and angles $\varphi_{k}=k 2 \pi /(2 s+1), k=0, \ldots, 2 s$, corresponding to $(2 s+1)$ directions located on a cone about the z axis. Knowing the values $\Pi_{l}\left(\theta_{M}, \varphi_{k}\right)$, and using the orthogonality relation $\sum_{k} \operatorname{expi}\left(m-m^{\prime}\right) \varphi_{k}=(2 s+1) \delta_{m m^{\prime}}\left(-s \leqslant m, m^{\prime} \leqslant s\right)$, one has

$$
\begin{equation*}
\rho_{l m}=\frac{1}{(2 s+1) \mathcal{P}_{l m}\left(\theta_{M}\right)} \sum_{k=0}^{2 s} \mathrm{e}^{-\mathrm{i} m \varphi_{k}} \Pi_{l}\left(\theta_{M}, \varphi_{k}\right) \tag{22}
\end{equation*}
$$

The multipole amplitudes $\rho_{l m}$ are just proportional to the Fourier transforms of $\Pi_{l}\left(\theta_{M}, \varphi_{k}\right)$. This methods works if $\mathcal{P}_{l m}\left(\theta_{M}\right) \neq 0$ for all (l, m) which can be achieved always. Now using equation (9), the matrix elements $\langle\mu| \rho\left|\mu^{\prime}\right\rangle$ are given in terms of measurable quantities. As a matter of fact, exactly $(2 s+1)^{2}$ real numbers have to be determined for a reconstruction of the operator ρ. One might suspect that for a generic density operator a natural generalization of this results holds: one may select other appropriate $(2 s+1)$ spatial directions to define the measurements.

The method presented here also applies to pure states with a density matrix $\rho=|\psi\rangle\langle\psi|$. If $|\psi\rangle$ is not normalized, $2(2 s+1)$ real parameters are unknown. In principle, the knowledge of $\rho_{l 0}$ and $\rho_{l 1}, 0 \leqslant l \leqslant 2 s$, is sufficient to reconstruct the state as follows from equation (9):

$$
\begin{align*}
& \psi_{\mu}^{*} \psi_{\mu}=\frac{(-1)^{s-\mu}}{\sqrt{2 s+1}} \sum_{l}(s \mu, s-\mu \mid l 0) \rho_{l 0} \tag{23}\\
& \psi_{\mu}^{*} \psi_{\mu+1}=\frac{(-1)^{s-\mu}}{\sqrt{2 s+1}} \sum_{l}(s \mu+1, s-\mu \mid l 1) \rho_{l 1} \tag{24}
\end{align*}
$$

The first set of equations allows one to extract the moduli of the coefficients, and the second one can be used subsequently to determine the relative phases. It is not clear, however, what kind of Stern-Gerlach measurement would determine $\rho_{l 0}$ and $\rho_{l 1}$ alone. Thus, even the most economic procedure for mixed states is necessarily redundant for pure states. The problem of defining nonredundant measurements for a pure spin state can be solved by a different method [17].

To sum up, the multipole expansion of the density operator for a spin s is a useful tool in order to reconstruct the quantum state by measurements with a Stern-Gerlach apparatus. The most efficient approach requires to measure the $(2 s+1)$ intensities along $(2 s+1)$ directions on a cone about some axis in space determining all $(2 s+1)^{2}$ free parameters of the density matrix ρ.

Appendix

The multiplication table of multipole operators in \mathcal{A}_{s} is given by

$$
\begin{equation*}
K_{l m} K_{l^{\prime} m^{\prime}}=\sum_{l^{\prime \prime} m^{\prime \prime}} \rho\left(l l^{\prime} l^{\prime \prime} s\right)\left(l m, l^{\prime} m^{\prime} \mid l^{\prime \prime} m^{\prime \prime}\right) K_{l^{\prime \prime} m^{\prime \prime}} \tag{25}
\end{equation*}
$$

where the number $\rho\left(l l^{\prime} l^{\prime \prime} s\right)$ is essentially a Racah $6 j$-coefficient [15]:

$$
\rho\left(l l^{\prime} l^{\prime \prime} s\right)=(-1)^{2 s+l^{\prime \prime}} \sqrt{(2 s+1)(2 l+1)\left(2 l^{\prime}+1\right)}\left\{\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \tag{26}\\
s & s & s
\end{array}\right\} .
$$

The Lie-algebra composition law of basis elements reads

$$
\begin{equation*}
\left[K_{l m}, K_{l^{\prime} m^{\prime}}\right]=\frac{\mathrm{i}}{\sqrt{s(s+1)}} \sum_{l^{\prime \prime} m^{\prime \prime}} \sigma\left(l l^{\prime} l^{\prime \prime} s\right)\left(l m, l^{\prime} m^{\prime} \mid l^{\prime \prime} m^{\prime \prime}\right) K_{l^{\prime \prime} m^{\prime \prime}} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma\left(l l^{\prime} l^{\prime \prime} s\right)=-\mathrm{i} \sqrt{s(s+1)}\left[1-(-1)^{l+l^{\prime}+l^{\prime \prime}}\right] \rho\left(l l^{\prime} l^{\prime \prime} s\right) \tag{28}
\end{equation*}
$$

References

[1] Raymer M G 1997 Contemp. Phys. 38343
[2] Pauli W 1933 Handbuch der Physik vol XXIV, part 1, ed Geiger and Scheel (Reprinted 1958 Encyclopedia of Physics vol V, part I (Berlin: Springer))
[3] Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 701244
[4] Dunn T J, Walmsley I A and Mukamel S 1995 Phys. Rev. Lett. 74884
[5] Leibfried D, Meekhof D, King B E, Monroe C, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 774281
[6] Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[7] Kurtsiefer C, Pfau T and Mlynek J 1997 Nature 386150
[8] Weigert St 1992 Phys. Rev. A 457688
[9] Newton R G and Young B 1968 Ann. Phys., NY 49393
[10] Feynman R P, Leighton R B and Sands M 1965 The Feynman Lectures on Physics vol III (Reading, MA: Addison-Wesley) ch 5
[11] Gale W, Guth E and Trammell G T 1968 Phys. Rev. 1651414
[12] Park J L and Band W 1971 Found. Phys. 1211
Park J L and Band W 1971 Found. Phys. 1339
[13] Leonhardt U 1995 Phys. Rev. Lett. 744101
[14] Walser R, Cirac J I and Zoller P 1996 Phys. Rev. Lett. 772658
[15] Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic)
[16] Amiet J-P unpublished
[17] Amiet J-P and Weigert St submitted

