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Switzerland
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Abstract. The Pauli problem is solved for a spin of lengths prepared in an arbitrary
(unnormalized) mixed state which has(2s + 1)2 free real parameters. The reconstruction of
its density operatorρ is possible if one knows the probabilities of the(2s+1) spin components
along each of(2s + 1) directions in space. These probabilties are directly accessible through
measurements performed with a Stern–Gerlach apparatus. A multipole expansion of the density
operator establishes the link between the matrix elements ofρ and the measured intensities.

Repeated measurements on an ensemble of identically prepared systems allow one to
reconstruct the density operator of a particle [1]. The methods to solve thisinverse
problem—originally formulated by Pauli [2] for pure particle states—simplifies considerably
if one performsredundant measurements. Experimentally, reconstruction schemes have
been shown to work for light [3], vibrating molecules [4] and ions in a trap [5] (see [6] for
a review). The state of atoms in motion has been reconstructed recently [7]. It is difficult,
however, to decide on theminimum number of expectation values in order to determine
unambiguously a pure or mixed state since the particle Hilbert-space is of infinite dimension.

The Hilbert space of a spins being of finite dimension, one expects the Pauli problem to
be easier to handle. Indeed, various answers to the problem have been obtained for mixed
spins of arbitrary length and for pure states withs = 1

2, 1, as reviewed in [8]. The density
matrix of a spins has been shown to be fixed through(4s + 1) measurements performed
with a Stern–Gerlach apparatus [9]. UsingFeynman filters, a phase-sensitive version of a
Stern–Gerlach apparatus [10], one can determine directly moduli and (relative) phases of
the individual matrix elements of the density operator [11] for spins. If normalized, it
depends on(2s + 1)2 − 1 = 4s(s + 1) real parameters. Furthermore, as shown in [12],
the expectations of 4s(s + 1) linearly independent spin multipoles do fix a unique density
operator; however, no method has indicated how to determine experimentally these values.
Alternatively, the discrete version of a Wigner function associated with finite-dimensional
Hilbert spaces allows for experimental reconstruction of quantum states [13] as exemplified
in the determination of a single quantized cavity mode [14].

In this letter, it will be shown that the mixed state of a spins can be reconstructed while
respecting the following two constraints:

(i) the measurements are performed with a standard Stern–Gerlach apparatus only;
(ii) no redundant information is acquired.
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These two requirements are natural in the sense that they correspond (i) to an especially
simple experimental procedure and (ii) to the most effective one. In particular, the use
of Feynman filtersinvolving delicate interference experiments is avoided. In addition,
the method isconstructive: the measured data are not only shown to single out aunique
quantum state but the matrix elements ofρ are expressedexplicitly in terms of expectation
values.

The states of a spin of magnitudes belong to a Hilbert spaceHs of complex dimension
(2s + 1), carrying an irreducible representation of the groupSU(2). The components of
the spin operatorES ≡ h̄Es with standard commutation relations [sx, sy ] = isz, . . . generate
rotations about the corresponding axes. The standard basis of the spaceHs is given by the
eigenvectors of thez component of the spin, denoted by|µ〉,−s 6 µ 6 s. The phases of
the states are fixed by the transformation under the anti-unitary time reversalT operator:
T |µ〉 = (−1)s−µ| − µ〉, and the ladder operatorss± = sx±isy act as usual in this basis:

s±|µ〉 =
√
s(s + 1)− µ(µ± 1)|µ± 1〉. (1)

The complexified algebraAs of observablesin the spaceHs has complex dimension
(2s + 1)2. It consists of all polynomials in the operatorssx , sy and sz with complex
coefficients and of degree 2s at most. A monomial of a degree higher than 2s can be
expressed as a linear combination of monomials of lower degree.

It is convenient to use a basis consisting ofmultipole operators associated with the
groupSU(2) (cf [15]):

Klm =
√

2s + 1
s∑

µµ′=−s
(−1)s−µ(lm|sµ′, s − µ)|µ′〉〈µ| 06 l 6 2s, −l 6 m 6 l (2)

where (lm|sµ′, s − µ) is the standard Clebsch–Gordan coefficient. The ensemble of all
operatorsKlm forms an irreducible tensorial set. The (2s + 1)2 Hermitian (K†lm =
(−1)mKl−m) multipole operators are orthogonal to each other:

1

2s + 1
Tr(K†l′m′Klm) = δll′δmm′ . (3)

The multiplication table of multipole operatorsKlm and their commutators are given in the
appendix.

As tensorial sets, the multipoles transform under an element ofSU(2) according to

U( Eω)KlmU( Eω)† =
l∑

m′=−l
Klm′D

(l)
m′m( Eω) (4)

where rotations about an axisEeω by an angle| Eω| are represented as follows:

U( Eω) = ei Eω·Es and D(l)( Eω) = ei Eω· EL(l) (5)

and the angular momentum operatorEL(l) acts in a subspace of dimension(2l + 1).
A statistical (mixed) spin state is given by a Hermitian operator, the density matrixρ,

which is an element of the algebraAs . Thus, it can be expanded in the basis of multipoles:

ρ = 1

2s + 1

∑
lm

ρ∗lmKlm (6)

with coefficientsρ∗lm given through (3) as expectation values of the operatorsKlm:

ρlm = Tr(ρKlm) = (−1)mρ∗l−m. (7)
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Explicitly, one has

ρlm =
√

2s + 1
∑
µµ′
(−1)s−µ(lm|sµ′, s − µ)〈µ|ρ|µ′〉. (8)

Using the orthogonality of the Clebsch–Gordan coefficients [15], one can express the matrix
elements of the density matrix in terms of the coefficients in the expansion (6):

〈µ|ρ|µ′〉 = (−1)s−µ√
2s + 1

∑
lm

(sµ′, s − µ|lm)ρlm (9)

and equation (7) implies that the diagonal elements ofρ are real. Clearly, both the collection
of all 〈µ|ρ|µ′〉 and of allρlm each depend on(2s+1)2 real parameters—if, for convenience,
the density operatorρ is not normalized to one but Trρ = ρ00 > 0 only is required.
According to equation (9), the reconstruction of a density matrix has been achieved if one
is able to express the coefficentsρlm in terms of expectation values.

As indicated earlier, the measurements are to be performed with a Stern–Gerlach
apparatus only. Therefore, the experimentally accessible quantities are given by the
intensitiespµ(θ, ϕ), representing the probability to find the system in an eigenstate|µ; θ, ϕ〉
of the spin operatorEn·Es along directionEn = (sinθ cosϕ, sinθ sinϕ, cosθ). The probabilities
are diagonal elements of the density operatorρ:

pµ(θ, ϕ) = 〈µ; θ, ϕ|ρ|µ; θ, ϕ〉 (10)

where

|µ; θ, ϕ〉 ≡ exp[−iϕsz] exp[−iθsy ]|µ〉 =
l∑

ν=−l
|ν〉〈ν|U †(0, θ, ϕ)|µ〉. (11)

Upon introducing the multipole expansion (6) ofρ into (10), one obtains

pµ(θ, ϕ) = 1

2s + 1

∑
lm

ρ∗lm〈µ|U(0, θ, ϕ)KlmU †(0, θ, ϕ)|µ〉

= 1

2s + 1

∑
lmm′

ρ∗lm〈µ|Klm′ |µ〉D(l)
m′m(0, θ, ϕ) (12)

and the second equality follows from the transformation property of the basisKlm under
rotations, equation (4). It is useful to replace the measured intensitiespµ by (2s+1) linear
combinations:

5l(θ, ϕ) =
√

2s + 1
l∑

µ=−l
(−1)s−µ(sµ, s − µ|l0)pµ(θ, ϕ). (13)

A linear relation between measurable quantities and the multipole coefficients of the spin
state follows if the probabilitiespµ are expressed as in equation (12):

5l(θ, ϕ) =
(

4π

2l + 1

)1
2 l∑
m=−l

Ylm(θ, ϕ)ρ
∗
lm (14)

where the functionsYlm(θ, ϕ) are the spherical harmonics:(
4π

2l + 1

)1
2

Ylm(θ, ϕ) = d(l)0m(θ)e
imϕ = D(l)

0m(0, θ, ϕ). (15)

In order to express the density matrix in terms of measurable quantities, now one has to
determine an appropriate set of directions in space such that it becomes possible to invert
the fundamental relation, equation (14). As a matter of fact there are many possibilities to
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extract the(2s + 1)2 components of the stateρ from measured data (recall that the density
operatorρ is not normalized to one). In the following, four approaches are presented which
require less and less measurements.

(i) If one were able to measure the probabilitiespµ(θ, ϕ) for all anglesθ ∈ [0, π), ϕ ∈
[0, 2π), one could use the orthogonality of the spherical harmonics to extract the unknowns
by an integration over the surface of the unit sphere:

ρlm =
(

4π

2l + 1

)1
2
∫ 2π

0

∫ π

0
dϕ dθ sinθYlm(θ, ϕ)5

∗
l (θ, ϕ). (16)

In view of the finite number of unknown parameters, this procedure involves a highly
redundant (and physically unrealistic) set of measurements.

(ii) What does a discretized version of this approach look like? Measure the probabilities
for (2s + 1)2 pairs of angles(θj , ϕk) distributed ‘homogeneously’ over the sphere in such a
way that the square matrix

Y(lm)(jk) ≡ Ylm(θj , ϕk) (17)

is invertible. A possible choice of directionsEn(θj , ϕk) is given byϕk = k2π/(2s + 1),
k = 1, . . . ,2s + 1, andθj = jπ/(2s + 2), j = 1, . . . ,2s + 1, for example [16]. Note that
this method works for arbitrary states since the matrixY(lm)(jk) is independent of the density
operatorρ. Altogether, the values of(2s + 1)3 real numbers have to be determined, thus
still exceeding considerably the number of independent parameters.

For a further reduction of the number of measurements, the explicit form of the spherical
harmonics is used:

Ylm(θ, ϕ) = eimϕPlm(θ) (18)

wherePlm(θ) = NlmPml (cosθ) with Pml being a Legendre function of first kind multiplied
by a numerical factorNlm. UsingPl−m = (−1)mPlm and equation (7), one obtains for any
pair of angles(θj , ϕk)

5l(θj , ϕk) = Pl0(θj )ρl0+
l∑

m=1

Plm(θj )(cos(mϕk)Reρlm + sin(mϕk)Im ρlm). (19)

(iii) For directionsϕ0 = 0, ϕ1 = 2π/(2s + 1), θj = jπ/(2s + 1) with j = 0, . . . ,2s on
two half-circles, one obtains a set of 2(2s + 1)2 linear equations from equation (19):

5l(θj , 0) = Pl0(θj )ρl0+
l∑

m=1

Plm(θj )Reρlm (20)

5l(θj , ϕ1) = Pl0(θj )ρl0+
l∑

m=1

Plm(θj )(cos(mϕ1)Reρlm + sin(mϕ1)Im ρlm). (21)

When checking the casel = 2s, one realizes that indeed all 2(2s+1)2 equations are needed
to solve for the unknown real and imaginary parts ofρlm, requiring the matricesPlm(θj ) to
be invertible for allθj .

(iv) The most economical scheme is to measure the probabilities at a fixed angleθj = θM ,
and anglesϕk = k 2π/(2s + 1), k = 0, . . . ,2s, corresponding to(2s + 1) directions located
on a cone about thez axis. Knowing the values5l(θM, ϕk), and using the orthogonality
relation

∑
k exp i(m−m′)ϕk = (2s + 1)δmm′ (−s 6 m,m′ 6 s), one has

ρlm = 1

(2s + 1)Plm(θM)

2s∑
k=0

e−imϕk5l(θM, ϕk). (22)
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The multipole amplitudesρlm are just proportional to the Fourier transforms of5l(θM, ϕk).
This methods works ifPlm(θM) 6= 0 for all (l, m) which can be achieved always. Now using
equation (9), the matrix elements〈µ|ρ|µ′〉 are given in terms of measurable quantities. As a
matter of fact, exactly(2s+1)2 real numbers have to be determined for a reconstruction of
the operatorρ. One might suspect that for a generic density operator a natural generalization
of this results holds: one may select other appropriate(2s + 1) spatial directions to define
the measurements.

The method presented here also applies to pure states with a density matrixρ = |ψ〉〈ψ |.
If |ψ〉 is not normalized, 2(2s+1) real parameters are unknown. In principle, the knowledge
of ρl0 andρl1, 06 l 6 2s, is sufficient to reconstruct the state as follows from equation (9):

ψ∗µψµ =
(−1)s−µ√

2s + 1

∑
l

(sµ, s − µ|l0)ρl0 (23)

ψ∗µψµ+1 = (−1)s−µ√
2s + 1

∑
l

(sµ+ 1, s − µ|l1)ρl1. (24)

The first set of equations allows one to extract the moduli of the coefficients, and the second
one can be used subsequently to determine the relative phases. It is not clear, however,
what kind of Stern–Gerlach measurement would determineρl0 andρl1 alone. Thus, even
the most economic procedure for mixed states is necessarily redundant for pure states. The
problem of defining nonredundant measurements for a pure spin state can be solved by a
different method [17].

To sum up, the multipole expansion of the density operator for a spins is a useful tool
in order to reconstruct the quantum state by measurements with a Stern–Gerlach apparatus.
The most efficient approach requires to measure the(2s + 1) intensities along(2s + 1)
directions on a cone about some axis in space determining all(2s + 1)2 free parameters of
the density matrixρ.

Appendix

The multiplication table of multipole operators inAs is given by

KlmKl′m′ =
∑
l′′m′′

ρ(ll′l′′s)(lm, l′m′|l′′m′′)Kl′′m′′ (25)

where the numberρ(ll′l′′s) is essentially a Racah 6j -coefficient [15]:

ρ(ll′l′′s) = (−1)2s+l
′′√
(2s + 1)(2l + 1)(2l′ + 1)

{
l l′ l′′

s s s

}
. (26)

The Lie-algebra composition law of basis elements reads

[Klm,Kl′m′ ] = i√
s(s + 1)

∑
l′′m′′

σ(ll′l′′s)(lm, l′m′|l′′m′′)Kl′′m′′ (27)

where

σ(ll′l′′s) = −i
√
s(s + 1)[1− (−1)l+l

′+l′′ ]ρ(ll′l′′s). (28)
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